Adaptive Nearest Neighbor Classification and Regression Based on Decision Trees

slides by
George Chen
Carnegie Mellon University
Fall 2017

NN and Kernel Classification and Regression

News Activity for \#Barclays

News Activity for \#Barclays

News Activity for \#Barclays

News Activity for \#Barclays

GMT Time (June 27, 2012)

News Activity for \#Barclays

GMT Time (June 27, 2012)

News Activity for \#Barclays

GMT Time (June 27, 2012)

News Activity for \#Barclays

GMT Time (June 27, 2012)

News Activity for \#Barclays

GMT Time (June 27, 2012)
How we did this: weighted majority voting
Chen, Nikolov, and Shah. A Latent Source Model for Nonparametric Time Series Classification. NIPS 2013.

Weighted Majority Voting

Weighted Majority Voting

Test data

Weighted Majority Voting

Red $=$ viral
Blue $=$ not viral

Weighted Majority Voting

Nearest Neighbor Classification

NN Classification Variants

NN Classification Variants

- \mathbf{k}-NN classification: consider k most similar training data to test data point

NN Classification Variants

- \boldsymbol{k}-NN classification: consider k most similar training data to test data point
- Weighted: when tallying up votes, use the similarities that we computed

NN Classification Variants

- \mathbf{k}-NN classification: consider k most similar training data to test data point
- Weighted: when tallying up votes, use the similarities that we computed
- Unweighted: when tallying up votes, have each of the k nearest neighbors have an equal vote of 1 (usually k-NN classification refers to unweighted case)

NN Classification Variants

- \mathbf{k}-NN classification: consider k most similar training data to test data point
- Weighted: when tallying up votes, use the similarities that we computed
- Unweighted: when tallying up votes, have each of the k nearest neighbors have an equal vote of 1 (usually k-NN classification refers to unweighted case)
- Fixed-radius near neighbor classification: consider all training data at least some similarity threshold close to test data point (i.e., use all training data distance $\leq h$ away)

NN Classification Variants

- \mathbf{k}-NN classification: consider k most similar training data to test data point
- Weighted: when tallying up votes, use the similarities that we computed
- Unweighted: when tallying up votes, have each of the k nearest neighbors have an equal vote of 1 (usually k-NN classification refers to unweighted case)
- Fixed-radius near neighbor classification: consider all training data at least some similarity threshold close to test data point (i.e., use all training data distance $\leq h$ away)
- Once again, can use weighted or unweighted votes

Regression: Each label is continuous instead of discrete

Kernel Regression

Kernel Regression

Kernel Regression

Weighted average instead of weighted majority vote

NN Regression

NN Regression

Just like classification: k-NN and fixed-radius NN variants, also weighted and unweighted
"Adaptive" nearest neighbors: learn the similarity function

Decision Trees

Example Made-Up Data

Example Decision Tree

Learning a Decision Tree

Learning a Decision Tree

- Many ways: general approach actually looks a lot like divisive clustering but accounts for label information

Learning a Decision Tree

- Many ways: general approach actually looks a lot like divisive clustering but accounts for label information
- I'll show one way (that nobody actually uses in practice) but it's easy to explain

Learning a Decision Tree

Learning a Decision Tree

1. Pick a random feature

Learning a Decision Tree

1. Pick a random feature

Learning a Decision Tree

1. Pick a random feature

2. Find threshold for which red and blue are as "separate as possible" (on one side, mostly red; on other side, mostly blue)

Learning a Decision Tree

1. Pick a random feature

2. Find threshold for which red and blue are as "separate as possible" (on one side, mostly red; on other side, mostly blue)

Learning a Decision Tree

1. Pick a random feature

2. Find threshold for which red and blue are as "separate as possible" (on one side, mostly red; on other side, mostly blue)

Learning a Decision Tree

1. Pick a random feature

2. Find threshold for which red and blue are as "separate as possible" (on one side, mostly red; on other side, mostly blue)

Learning a Decision Tree

1. Pick a random feature

2. Find threshold for which red and blue are as "separate as possible" (on one side, mostly red; on other side, mostly blue)

Learning a Decision Tree

1. Pick a random feature

2. Find threshold for which red and blue are as "separate as possible" (on one side, mostly red; on other side, mostly blue)

Learning a Decision Tree

Learning a Decision Tree

Learning a Decision Tree

Within each side, recurse until a

Example termination criteria: $\geq 90 \%$ points within region has same label, number of points within region is <5

Learning a Decision Tree

Example termination criteria: $\geq 90 \%$ points within region has same label, number of points within region is <5

Learning a Decision Tree

Within each side, recurse until a

Example termination criteria: $\geq 90 \%$ points within region has same label, number of points within region is <5

Learning a Decision Tree

Within each side, recurse until a

Example termination criteria: $\geq 90 \%$ points within region has same label, number of points within region is <5

Learning a Decision Tree

Within each side, recurse until a

Example termination criteria: $\geq 90 \%$ points within region has same label, number of points within region is <5

Learning a Decision Tree

Within each side, recurse until a

Example termination criteria: $\geq 90 \%$ points within region has same label, number of points within region is <5

Learning a Decision Tree

Within each side, recurse until a

Example termination criteria: $\geq 90 \%$ points within region has same label, number of points within region is <5

Learning a Decision Tree

Example termination criteria: $\geq 90 \%$ points within region has same label, number of points within region is <5

Learning a Decision Tree

Within each side, recurse until a

Example termination criteria: $\geq 90 \%$ points within region has same label, number of points within region is <5

Learning a Decision Tree

Within each side, recurse until a

Example termination criteria: $\geq 90 \%$ points within region has same label, number of points within region is <5

Learning a Decision Tree

Example termination criteria: $\geq 90 \%$ points within region has same label, number of points within region is <5

Learning a Decision Tree

Within each side, recurse until a

Example termination criteria: $\geq 90 \%$ points within region has same label, number of points within region is <5

Decision Tree Learned

Decision Tree Learned

Decision Tree Learned

For a new person with feature vector (age, weight), easy to predict!

Nearest Neighbor Interpretation

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell"

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell"

Decision Tree Learned

For a new person with feature vector (age, weight), easy to predict!

Decision Tree Learned

For a new person with feature vector (age, weight), easy to predict!

Feature space sliced up into leaf cells

Decision Tree

Feature space sliced up into leaf cells

Decision Tree

Red: diabetic
Blue: not diabetic

Feature space sliced up into leaf cells

Feature space sliced up into leaf cells

Decision Tree

Feature space sliced up into leaf cells

Decision Tree

Feature space sliced up into leaf cells

Decision Tree

Feature space sliced up into leaf cells

Decision Tree

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell"

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Red: diabetic
Blue: not diabetic 9 nearest neighbors

Similarity to points in same leaf cell: 1/(\# training points in leaf cell) Similarity to points in other leaf cells: 0

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell"

 Also: Any test data point lands in one leaf cellWeight (lb)

Election results

Diabetic: 8/9 votes (winner) Not diabetic: 1/9 votes

Similarity to points in same leaf cell: 1/(\# training points in leaf cell) Similarity to points in other leaf cells: 0

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Weight (Ib)

Not diabetic: $1 / 9$ votes

Election results

Diabetic: 8/9 votes (winner)

Test point

Red: diabetic
Blue: not diabetic 9 nearest neighbors

Similarity to points in same leaf cell: 1/(\# training points in leaf cell) Similarity to points in other leaf cells: 0

Weighted majority voting using this definition of similarity precisely gives the prediction for this particular decision tree!
$20 \quad 30 \quad 40 \quad 50 \quad$ Age (years)

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

Decision Tree for Classification

Decision Tree for Classification

- Many ways to learn (some popular ways: CART, C4.5)

Decision Tree for Classification

- Many ways to learn (some popular ways: CART, C4.5)
- Extremely easy to interpret and to do prediction

Decision Tree for Classification

- Many ways to learn (some popular ways: CART, C4.5)
- Extremely easy to interpret and to do prediction
- Nearest neighbor interpretation:

Decision Tree for Classification

- Many ways to learn (some popular ways: CART, C4.5)
- Extremely easy to interpret and to do prediction
- Nearest neighbor interpretation:
- For each test point, look at leaf cell it falls into to find its nearest neighbors among the training data (note: \# of nearest neighbors varies!)

Decision Tree for Classification

- Many ways to learn (some popular ways: CART, C4.5)
- Extremely easy to interpret and to do prediction
- Nearest neighbor interpretation:
- For each test point, look at leaf cell it falls into to find its nearest neighbors among the training data (note: \# of nearest neighbors varies!)
- Prediction for test point: majority vote of nearest neighbors' labels

Decision Tree for Classification

- Many ways to learn (some popular ways: CART, C4.5)
- Extremely easy to interpret and to do prediction
- Nearest neighbor interpretation:
- For each test point, look at leaf cell it falls into to find its nearest neighbors among the training data (note: \# of nearest neighbors varies!)
- Prediction for test point: majority vote of nearest neighbors' labels
- Learning a decision tree learns a similarity function (that depends on labels)

Decision Tree for Classification Regression

- Many ways to learn (some popular ways: CART, C4.5)
- Extremely easy to interpret and to do prediction
- Nearest neighbor interpretation:
- For each test point, look at leaf cell it falls into to find its nearest neighbors among the training data (note: \# of nearest neighbors varies!)
- Prediction for test point: majority vote of nearest neighbors' labels average
- Learning a decision tree learns a similarity function (that depends on labels)

Decision Forest for Classification

Decision Forest for Classification

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)

Decision Forest for Classification

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
\rightarrow by re-running the same learning procedure, we can get different decision trees that make different predictions!

Decision Forest for Classification

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
\rightarrow by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

Decision Forest for Classification

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
\rightarrow by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

Decision Forest for Classification

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
\rightarrow by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

Learn each tree
separately using
same training data

$$
\text { Tree } 2
$$

$$
\text { Tree } 3
$$

$$
\cdots \quad \text { Tree } T
$$

Decision Forest for Classification

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
\rightarrow by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

Learn each tree
separately using same training data

New test data point

Decision Forest for Classification

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
\rightarrow by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

Learn each tree
separately using same training data

New test data point

Decision Forest for Classification

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
\rightarrow by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

Learn each tree
separately using same training data

diabetic
New test data point

Decision Forest for Classification

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
\rightarrow by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

Learn each tree
separately using same training data

diabetic

New test data point

Final prediction: majority vote of the different trees' predictions

Decision Forest for Classification

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
\rightarrow by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

Learn each tree
separately using same training data

diabetic
New test data point

Final prediction: majority vote of the different trees' predictions This is not the only way to aggregate predictions!

Decision Forest for Classification

Learn each tree

separately using same training data

Decision Forest for Classification

Learn each tree
separately using same training data

diabetic 8/9 votes
1/4 votes
5/7 votes

2/3 votes not diabetic $1 / 9$ votes $3 / 4$ votes $2 / 7$ votes

1/3 votes

Decision Forest for Classification

Learn each tree separately using same training data

diabetic $8 / 9$ votes $1 / 4$ votes $\quad 5 / 7$ votes $\quad 2 / 3$ votes

Final prediction: sum up votes across trees to find winner of election!

Decision Forest for Classification

Learn each tree separately using same training data

diabetic $8 / 9$ votes $1 / 4$ votes $5 / 7$ votes
2/3 votes

Final prediction: sum up votes across trees to find winner of election!
Nearest neighbor interpretation:
For a specific test data point x and training data point x_{i}

Decision Forest for Classification

Learn each tree separately using same training data

diabetic $8 / 9$ votes $1 / 4$ votes $5 / 7$ votes
2/3 votes

Final prediction: sum up votes across trees to find winner of election!
Nearest neighbor interpretation:
For a specific test data point x and training data point x_{i}

$$
\operatorname{similarity}\left(x, x_{i}\right)=\frac{1}{T} \sum_{t=1}^{T} \operatorname{similarity}_{t}\left(x, x_{i}\right)
$$

Decision Forest for Classification

Learn each tree
separately using same training data Tree 1
diabetic $8 / 9$ votes $1 / 4$ votes $5 / 7$ votes

Final prediction: sum up votes across trees to find winner of election!
Nearest neighbor interpretation:
For a specific test data point x and training data point x_{i}

$$
\operatorname{similarity}\left(x, x_{i}\right)=\frac{1}{T} \sum_{t=1}^{T} \operatorname{similarity}_{t}\left(x, x_{i}\right)
$$

Decision Forest for Classification

Learn each tree
separately using same training data

diabetic $8 / 9$ votes $1 / 4$ votes $5 / 7$ votes
2/3 votes

Final prediction: sum up votes across trees to find winner of election!
Nearest neighbor interpretation:
For a specific test data point x and training data point x_{i}
similarity $\left(x, x_{i}\right)=\frac{1}{T} \sum_{t=1}^{T} \operatorname{similarity}_{t}\left(x, x_{i}\right) ;$ between 0 and 1

Decision Forest for Classification

Learn each tree Regression

Average these values to get final prediction
Nearest neighbor interpretation:
For a specific test data point x and training data point x_{i}
similarity $\left(x, x_{i}\right)=\frac{1}{T} \sum_{t=1}^{T} \operatorname{similarity}_{t}\left(x, x_{i}\right){ }^{2}$ between 0 and 1

Decision Forest

Decision Forest

Learn each tree
separately using same training data

Combine values to get final prediction
Question: What happens if all the trees are the same?

Decision Forest

Learn each tree separately using same training data

Combine values to get final prediction
Question: What happens if all the trees are the same?
Adding randomness can make trees more different!

Decision Forest

Learn each tree
separately using same training data

Question: What happens if all the trees are the same?
Adding randomness can make trees more different!

- Random Forest: in addition to randomly choosing features to threshold, also randomize training data used for each tree

Decision Forest

Question: What happens if all the trees are the same?
Adding randomness can make trees more different!

- Random Forest: in addition to randomly choosing features to threshold, also randomize training data used for each tree
n training \quad Decision Forest data points

Question: What happens if all the trees are the same?
Adding randomness can make trees more different!

- Random Forest: in addition to randomly choosing features to threshold, also randomize training data used for each tree

Question: What happens if all the trees are the same?
Adding randomness can make trees more different!

- Random Forest: in addition to randomly choosing features to threshold, also randomize training data used for each tree

Question: What happens if all the trees are the same?
Adding randomness can make trees more different!

- Random Forest: in addition to randomly choosing features to threshold, also randomize training data used for each tree

Question: What happens if all the trees are the same?
Adding randomness can make trees more different!

- Random Forest: in addition to randomly choosing features to threshold, also randomize training data used for each tree

Question: What happens if all the trees are the same?
Adding randomness can make trees more different!

- Random Forest: in addition to randomly choosing features to threshold, also randomize training data used for each tree

Question: What happens if all the trees are the same?
Adding randomness can make trees more different!

- Random Forest: in addition to randomly choosing features to threshold, also randomize training data used for each tree

Question: What happens if all the trees are the same?
Adding randomness can make trees more different!

- Random Forest: in addition to randomly choosing features to threshold, also randomize training data used for each tree
- Extremely randomized trees: further randomize thresholds rather than trying to pick clever thresholds

Boosting

Boosting

I'll only sketch the general idea

Boosting

I'll only sketch the general idea

Random decision forests learned each tree separately

Boosting

I'll only sketch the general idea

Random decision forests learned each tree separately

If some trees are bad, we still weight them equally

Boosting

I'll only sketch the general idea

Random decision forests learned each tree separately

Boosting: learn trees sequentially, and learn from previous trees' mistakes

If some trees are bad, we still weight them equally

Boosting

I'll only sketch the general idea

Random decision forests learned each tree separately

Boosting: learn trees sequentially, and learn from previous trees' mistakes

If some trees are bad, we still weight them equally

Boosting: weight trees unequally so bad trees are down-weighted

Boosting

Boosting

Tree 1

Boosting

Training data

Tree 1

Boosting

Training data

Boosting

Training data

Boosting

Predicted: cat, dog, shark

Boosting

Predicted: cat, dog, shark
Actual: cat, cat, robot

Boosting

Predicted: cat, dog, shark
Actual: cat, cat, robot
Where did the errors appear?

Boosting

Predicted: cat,dog shark
Actual: cat, cat, robot
Where did the errors appear?

Boosting

Predicted: cat, dog shark
Actual: cat,"cat, wobot
Where did the errors appear?
Duplicate these training examples
to emphasize them more when
learning the next tree

Boosting

Training data

Predicted: cat, dog shark
Actual: cat, ${ }^{\prime}$ cat, xobot
Where did the errors appear?
Duplicate these training examples
to emphasize them more when
learning the next tree

Boosting

Training data

Predicted: cat,'dog shark
Actual: cat, ${ }^{\prime}$ cat, , robot
Where did the errors appear?
Duplicate these training examples
to emphasize them more when
learning the next tree

Boosting

Training data

Predicted: cat,'dog shark
Actual: cat, ${ }^{\prime}$ cat, robot
Where did the errors appear?
Duplicate these training examples
to emphasize them more when
learning the next tree

Boosting

Training data

Predicted: cat, dog shark
Actual: cat, cat, robot
Where did the errors appear?
Duplicate these training examples
to emphasize them more when
learning the next tree

Boosting

Predicted: cat,'dog shark Actual: cat, cat, robot

Predicted: cat, cat, donkey
Actual: cat, cat, robot
Where did the errors appear?
Duplicate these training examples
to emphasize them more when
learning the next tree

Boosting

Predicted: cat,'dog shark Actual: cat, cat, robot

Where did the errors appear?

Predicted: cat, cat, donkey
Actual: cat, cat, robot
Where did the errors appear?
Duplicate these training examples
to emphasize them more when
learning the next tree

Boosting

Predicted: cat,'dog shark Actual: cat, ${ }^{\prime}$ cat, ,

Where did the errors appear?

Predicted: cat, cat,'donkey
Actual: cat, cat,'robot
Where did the errors appear?
Duplicate these training examples
to emphasize them more when
learning the next tree

Boosting

Predicted: cat,'dog shark
Actual: cat, ${ }^{\prime}$ cat, ,
Where did the errors appear?
Duplicate these training examples to emphasize them more when learning the next tree

Predicted: cat, cat,donkey
Actual: cat, cat,'robot
Where did the errors appear?
Duplicate these training examples to emphasize them more when learning the next tree

Boosting

Predicted: cat,'dog shark
Actual: cat, cat, robot
Where did the errors appear?
Duplicate these training examples to emphasize them more when learning the next tree

Training data

Predicted: cat, cat,'donkey
Actual: cat, cat, robot
Where did the errors appear?
Duplicate these training examples to emphasize them more when learning the next tree

Boosting

Predicted: cat,'dog shark
Actual: cat, cat, robot
Where did the errors appear?
Duplicate these training examples to emphasize them more when learning the next tree

Predicted: cat, cat,donkey
Actual: cat, cat,'robot
Where did the errors appear?
Duplicate these training examples to emphasize them more when learning the next tree

Boosting

Predicted: cat, 'dog shark
Actual: cat, cat, robot
Where did the errors appear?
Duplicate these training examples to emphasize them more when learning the next tree

Predicted: cat, cat,donkey:
Actual: cat, cat,'robot
Where did the errors appear?
Duplicate these training examples to emphasize them more when learning the next tree

Boosting

Training data: $\quad x_{1}, x_{2}, \ldots, x_{n}$ $x_{1}, x_{2}, \ldots, x_{n}$
Weights: $w_{1}^{(1)}, w_{2}^{(1)}, \ldots, w_{n}^{(1)}$

$w_{1}^{(2)}, w_{2}^{(2)}, \ldots, w_{n}^{(2)}$

Predicted: $\widehat{y}_{1}^{(1)}, \widehat{y}_{2}^{(1)}, \ldots, \widehat{y}_{n}^{(1)}$
Actual: $\quad y_{1}, y_{2}, \ldots, y_{n}$
$y_{1}, y_{2}, \ldots, y_{n}$

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

$$
w_{1}^{(T)}, w_{2}^{(T)}, \ldots, w_{n}^{(T)}
$$

$\widehat{y}_{1}^{(T)}, \widehat{y}_{2}^{(T)}, \ldots, \widehat{y}_{n}^{(T)}$
$y_{1}, y_{2}, \ldots, y_{n}$

Boosting

Learn trees sequentially accounting for mistakes made previously
Training data: $x_{1}, x_{2}, \ldots, x_{n}$

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

Weights: $w_{1}^{(1)}, w_{2}^{(1)}, \ldots, w_{n}^{(1)} \quad w_{1}^{(2)}, w_{2}^{(2)}, \ldots, w_{n}^{(2)}$

Predicted: $\widehat{y}_{1}^{(1)}, \widehat{y}_{2}^{(1)}, \ldots, \widehat{y}_{n}^{(1)}$

$$
\widehat{y}_{1}^{(2)}, \widehat{y}_{2}^{(2)}, \ldots, \widehat{y}_{n}^{(2)}
$$

Actual: $\quad y_{1}, y_{2}, \ldots, y_{n}$
$y_{1}, y_{2}, \ldots, y_{n}$
$w_{1}^{(T)}, w_{2}^{(T)}, \ldots, w_{n}^{(T)}$

$$
\widehat{y}_{1}^{(T)}, \widehat{y}_{2}^{(T)}, \ldots, \widehat{y}_{n}^{(T)}
$$

$$
y_{1}, y_{2}, \ldots, y_{n}
$$

Boosting

Learn trees sequentially accounting for mistakes made previously
Training data: $x_{1}, x_{2}, \ldots, x_{n}$

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

Weights: $w_{1}^{(1)}, w_{2}^{(1)}, \ldots, w_{n}^{(1)} \quad w_{1}^{(2)}, w_{2}^{(2)}, \ldots, w_{n}^{(2)}$

Predicted: $\widehat{y}_{1}^{(1)}, \widehat{y}_{2}^{(1)}, \ldots, \widehat{y}_{n}^{(1)}$

$$
\widehat{y}_{1}^{(2)}, \widehat{y}_{2}^{(2)}, \ldots, \widehat{y}_{n}^{(2)}
$$

Actual: $\quad y_{1}, y_{2}, \ldots, y_{n}$
$y_{1}, y_{2}, \ldots, y_{n}$
$w_{1}^{(T)}, w_{2}^{(T)}, \ldots, w_{n}^{(T)}$

$$
\begin{gathered}
\widehat{y}_{1}^{(T)}, \widehat{y}_{2}^{(T)}, \ldots, \widehat{y}_{n}^{(T)} \\
y_{1}, y_{2}, \ldots, y_{n}
\end{gathered}
$$

Adjust for how much each tree's votes count

Boosting

Learn trees sequentially accounting for mistakes made previously
Training data: $x_{1}, x_{2}, \ldots, x_{n}$

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

Weights: $w_{1}^{(1)}, w_{2}^{(1)}, \ldots, w_{n}^{(1)} \quad w_{1}^{(2)}, w_{2}^{(2)}, \ldots, w_{n}^{(2)}$

Predicted: $\widehat{y}_{1}^{(1)}, \widehat{y}_{2}^{(1)}, \ldots, \widehat{y}_{n}^{(1)}$

$$
\widehat{y}_{1}^{(2)}, \widehat{y}_{2}^{(2)}, \ldots, \widehat{y}_{n}^{(2)}
$$

Actual: $\quad y_{1}, y_{2}, \ldots, y_{n} \quad y_{1}, y_{2}, \ldots, y_{n}$
$w_{1}^{(T)}, w_{2}^{(T)}, \ldots, w_{n}^{(T)}$

$$
\begin{gathered}
\widehat{y}_{1}^{(T)}, \widehat{y}_{2}^{(T)}, \ldots, \widehat{y}_{n}^{(T)} \\
y_{1}, y_{2}, \ldots, y_{n}
\end{gathered}
$$

Adjust for how much each tree's votes count
$\operatorname{similarity}\left(x, x_{i}\right)=\sum_{t=1}^{T} \alpha_{t} \operatorname{similarity}_{t}\left(x, x_{i}\right)$

Boosting

Learn trees sequentially accounting for mistakes made previously
Training data: $x_{1}, x_{2}, \ldots, x_{n}$

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

Weights: $w_{1}^{(1)}, w_{2}^{(1)}, \ldots, w_{n}^{(1)} \quad w_{1}^{(2)}, w_{2}^{(2)}, \ldots, w_{n}^{(2)}$

Predicted: $\widehat{y}_{1}^{(1)}, \widehat{y}_{2}^{(1)}, \ldots, \widehat{y}_{n}^{(1)}$

$$
\widehat{y}_{1}^{(2)}, \widehat{y}_{2}^{(2)}, \ldots, \widehat{y}_{n}^{(2)}
$$

$$
\text { Actual: } \quad y_{1}, y_{2}, \ldots, y_{n} \quad y_{1}, y_{2}, \ldots, y_{n}
$$

$$
w_{1}^{(T)}, w_{2}^{(T)}, \ldots, w_{n}^{(T)}
$$

$$
\begin{gathered}
\widehat{y}_{1}^{(T)}, \widehat{y}_{2}^{(T)}, \ldots, \widehat{y}_{n}^{(T)} \\
y_{1}, y_{2}, \ldots, y_{n}
\end{gathered}
$$

Adjust for how much each tree's votes count

$$
\begin{gathered}
\operatorname{similarity}\left(x, x_{i}\right)=\sum_{t=1}^{T} a_{t} \hat{i}_{t} \operatorname{similarity}{ }_{t}\left(x, x_{i}\right) \\
\text { weight for tree } t
\end{gathered}
$$

Boosting

Learn trees sequentially accounting for mistakes made previously

Training data: $x_{1}, x_{2}, \ldots, x_{n}$
$x_{1}, x_{2}, \ldots, x_{n}$ $x_{1}, x_{2}, \ldots, x_{n}$
Weights: $w_{1}^{(1)}, w_{2}^{(1)}, \ldots, w_{n}^{(1)} \quad w_{1}^{(2)}, w_{2}^{(2)}, \ldots, w_{n}^{(2)}$

Predicted: $\widehat{y}_{1}^{(1)}, \widehat{y}_{2}^{(1)}, \ldots, \widehat{y}_{n}^{(1)}$
Actual: $\quad y_{1}, y_{2}, \ldots, y_{n}$

$\widehat{y}_{1}^{(2)}, \widehat{y}_{2}^{(2)}, \ldots, \widehat{y}_{n}^{(2)}$
$y_{1}, y_{2}, \ldots, y_{n}$
$w_{1}^{(T)}, w_{2}^{(T)}, \ldots, w_{n}^{(T)}$

$$
\widehat{y}_{1}^{(T)}, \widehat{y}_{2}^{(T)}, \ldots, \widehat{y}_{n}^{(T)}
$$

$$
y_{1}, y_{2}, \ldots, y_{n}
$$

Adjust for how much each tree's votes count
$\operatorname{similarity}\left(x, x_{i}\right)=\sum_{t=1}^{T} \underbrace{}_{t} \operatorname{cosimilarity}_{t}\left(x, x_{i}\right)$
weight for tree t
Still an adaptive NN method!

Boosting

Learn trees sequentially accounting for mistakes made previously
Training data:

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

Weights: $w_{1}^{(1)}, w_{2}^{(1)}, \ldots, w_{n}^{(1)} \quad w_{1}^{(2)}, w_{2}^{(2)}, \ldots, w_{n}^{(2)} \quad-----w_{1}^{(T)}, w_{2}^{(T)}, \ldots, w_{n}^{(T)}$

Predicted: $\widehat{y}_{1}^{(1)}, \widehat{y}_{2}^{(1)}, \ldots, \widehat{y}_{n}^{(1)}$
Actual: $\quad y_{1}, y_{2}, \ldots, y_{n}$

$\widehat{y}_{1}^{(2)}, \widehat{y}_{2}^{(2)}, \ldots, \widehat{y}_{n}^{(2)}$
$y_{1}, y_{2}, \ldots, y_{n}$

$\widehat{y}_{1}^{(T)}, \widehat{y}_{2}^{(T)}, \ldots, \widehat{y}_{n}^{(T)}$ $y_{1}, y_{2}, \ldots, y_{n}$

Adjust for how much each tree's votes count

$$
\begin{array}{cc}
\operatorname{similarity}\left(x, x_{i}\right)=\sum_{t=1}^{T} \alpha_{t} \operatorname{sinmilarity}_{t}\left(x, x_{i}\right) & \begin{array}{c}
\text { Different ways to choose } \\
\text { weights yield different } \\
\text { boosting methods }
\end{array} \\
\text { weight for tree } t & \text { (e.g., AdaBoost, gradient }
\end{array}
$$

Still an adaptive NN method!

