Adaptive Nearest Neighbor Classification and Regression Based on Decision Trees

slides by
George Chen
Carnegie Mellon University
Fall 2017

NN and Kernel Classification and Regression

GMT Time (June 27, 2012)

Tweet Rate

GMT Time (June 27, 2012)

GMT Time (June 27, 2012)

GMT Time (June 27, 2012)

GMT Time (June 27, 2012)

GMT Time (June 27, 2012)

How we did this: weighted majority voting

Chen, Nikolov, and Shah. A Latent Source Model for Nonparametric Time Series Classification.

NIPS 2013.

Test data

Test data

Red = viral

Blue = not viral

Nearest Neighbor Classification

• **k-NN classification:** consider **k** most similar training data to test data point

- **k-NN classification:** consider **k** most similar training data to test data point
 - Weighted: when tallying up votes, use the similarities that we computed

- **k-NN classification:** consider **k** most similar training data to test data point
 - Weighted: when tallying up votes, use the similarities that we computed
 - Unweighted: when tallying up votes, have each of the k nearest neighbors have an equal vote of 1 (usually k-NN classification refers to unweighted case)

- k-NN classification: consider k most similar training data to test data point
 - Weighted: when tallying up votes, use the similarities that we computed
 - Unweighted: when tallying up votes, have each of the k nearest neighbors have an equal vote of 1 (usually k-NN classification refers to unweighted case)
- Fixed-radius near neighbor classification: consider all training data at least some similarity threshold close to test data point (i.e., use all training data distance ≤ h away)

- k-NN classification: consider k most similar training data to test data point
 - Weighted: when tallying up votes, use the similarities that we computed
 - Unweighted: when tallying up votes, have each of the k nearest neighbors have an equal vote of 1 (usually k-NN classification refers to unweighted case)
- Fixed-radius near neighbor classification: consider all training data at least some similarity threshold close to test data point (i.e., use all training data distance ≤ h away)
 - Once again, can use weighted or unweighted votes

Regression: Each label is continuous instead of discrete

Kernel Regression

Kernel Regression

Kernel Regression

Weighted average instead of weighted majority vote

NN Regression

NN Regression

Just like classification: *k*-NN and fixed-radius NN variants, also weighted and unweighted

"Adaptive" nearest neighbors: learn the similarity function

Decision Trees

Example Made-Up Data

Example Decision Tree

 Many ways: general approach actually looks a lot like divisive clustering but accounts for label information

 Many ways: general approach actually looks a lot like divisive clustering but accounts for label information

 I'll show one way (that nobody actually uses in practice) but it's easy to explain

2. Find threshold for which red and blue are as "separate as possible" (on one side, mostly red; on other side, mostly blue)

2. Find threshold for which red and blue are as "separate as possible" (on one side, mostly red; on other side, mostly blue)

2. Find threshold for which red and blue are as "separate as possible" (on one side, mostly red; on other side, mostly blue)

2. Find threshold for which red and blue are as "separate as possible" (on one side, mostly red; on other side, mostly blue)

2. Find threshold for which red and blue are as "separate as possible" (on one side, mostly red; on other side, mostly blue)

2. Find threshold for which red and blue are as "separate as possible" (on one side, mostly red; on other side, mostly blue)

For a new person with feature vector (age, weight), easy to predict!

Nearest Neighbor Interpretation

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell"

Nearest Neighbor Interpretation

Note: Each training data point lands in one "leaf cell"

For a new person with feature vector (age, weight), easy to predict!

For a new person with feature vector (age, weight), easy to predict!

Feature space sliced up into leaf cells

Decision Tree

Note: Each training data point lands in one "leaf cell"

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Note: Each training data point lands in one "leaf cell" Also: Any test data point lands in one leaf cell

Prediction for test point: majority vote of training points in same leaf cell (these training points act as nearest neighbors to the test point!)

40

50

Age (years)

30

20

Many ways to learn (some popular ways: CART, C4.5)

- Many ways to learn (some popular ways: CART, C4.5)
- Extremely easy to interpret and to do prediction

- Many ways to learn (some popular ways: CART, C4.5)
- Extremely easy to interpret and to do prediction
- Nearest neighbor interpretation:

- Many ways to learn (some popular ways: CART, C4.5)
- Extremely easy to interpret and to do prediction
- Nearest neighbor interpretation:
 - For each test point, look at leaf cell it falls into to find its nearest neighbors among the training data (note: # of nearest neighbors varies!)

- Many ways to learn (some popular ways: CART, C4.5)
- Extremely easy to interpret and to do prediction
- Nearest neighbor interpretation:
 - For each test point, look at leaf cell it falls into to find its nearest neighbors among the training data (note: # of nearest neighbors varies!)
 - Prediction for test point: majority vote of nearest neighbors' labels

- Many ways to learn (some popular ways: CART, C4.5)
- Extremely easy to interpret and to do prediction
- Nearest neighbor interpretation:
 - For each test point, look at leaf cell it falls into to find its nearest neighbors among the training data (note: # of nearest neighbors varies!)
 - Prediction for test point: majority vote of nearest neighbors' labels
- Learning a decision tree learns a similarity function (that depends on labels)

Decision Tree for Classification Regression

- Many ways to learn (some popular ways: CART, C4.5)
- Extremely easy to interpret and to do prediction
- Nearest neighbor interpretation:
 - For each test point, look at leaf cell it falls into to find its nearest neighbors among the training data (note: # of nearest neighbors varies!)
 - Prediction for test point: majority vote of nearest neighbors' labels
- Learning a decision tree learns a similarity function (that depends on labels)

 Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
 - → by re-running the same learning procedure, we can get different decision trees that make different predictions!

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
 - → by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
 - → by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

Tree 1 Tree 2 Tree 3 \cdots Tree T

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
 - → by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

Learn each tree separately using same training data

Tree 1

Tree 2

Tree 3

• • •

Tree *T*

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
 - → by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

Learn each tree separately using same training data

New test data point

Tree 1

Tree 2

Tree 3

Tree T

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
 - → by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
 - → by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
 - → by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

Final prediction: majority vote of the different trees' predictions

- Typically, a decision tree is learned with randomness (e.g., we randomly chose which feature to threshold)
 - → by re-running the same learning procedure, we can get different decision trees that make different predictions!
- For a more stable prediction, use many decision trees

Final prediction: majority vote of the different trees' predictions. This is not the only way to aggregate predictions!

Final prediction: sum up votes across trees to find winner of election!

Final prediction: sum up votes across trees to find winner of election!

Nearest neighbor interpretation:

Final prediction: sum up votes across trees to find winner of election!

Nearest neighbor interpretation:

similarity
$$(x, x_i) = \frac{1}{T} \sum_{t=1}^{T} \text{similarity}_t(x, x_i)$$

Final prediction: sum up votes across trees to find winner of election!

Nearest neighbor interpretation:

similarity(
$$x, x_i$$
) = $\frac{1}{T} \sum_{t=1}^{T} \text{similarity}_t(x, x_i)$;
similarity function for t -th tree

Final prediction: sum up votes across trees to find winner of election!

Nearest neighbor interpretation:

similarity(
$$x, x_i$$
) = $\frac{1}{T} \sum_{t=1}^{T} \text{similarity}_t(x, x_i)$;
makes overall similarity similarity function for t -th tree between 0 and 1

Decision Forest for Classification

Regression

Average these values to get final prediction

Nearest neighbor interpretation:

similarity(
$$x, x_i$$
) = $\sum_{t=1}^{T} \sum_{t=1}^{T} \text{similarity}_{t}(x, x_i)$;
makes overall similarity similarity function for t -th tree

Question: What happens if all the trees are the same?

Question: What happens if all the trees are the same?

Adding randomness can make trees more different!

Question: What happens if all the trees are the same?

Adding randomness can make trees more different!

Question: What happens if all the trees are the same?

Adding randomness can make trees more different!

Decision Forest

New test data point

Tree 1 Tree 2 Tree 3 ... Tree 7

Combine values to get final prediction

Question: What happens if all the trees are the same?

Adding randomness can make trees more different!

Adding randomness can make trees more different!

Adding randomness can make trees more different!

Adding randomness can make trees more different!

Adding randomness can make trees more different!

Adding randomness can make trees more different!

Adding randomness can make trees more different!

- Random Forest: in addition to randomly choosing features to threshold, also randomize training data used for each tree
- Extremely randomized trees: further randomize thresholds rather than trying to pick clever thresholds

I'll only sketch the general idea

I'll only sketch the general idea

Random decision forests learned each tree separately

I'll only sketch the general idea

Random decision forests learned each tree separately

If some trees are bad, we still weight them equally

I'll only sketch the general idea

Random decision forests learned each tree separately

Boosting: learn trees *sequentially*, and learn from previous trees' mistakes

If some trees are bad, we still weight them equally

I'll only sketch the general idea

Random decision forests learned each tree separately

Boosting: learn trees *sequentially*, and learn from previous trees' mistakes

If some trees are bad, we still weight them equally

Boosting: weight trees unequally so bad trees are down-weighted

Tree 1

Training data

Tree 1

Training data

Training data

Training data

Predicted: cat, dog, shark

Training data

Predicted: cat, dog, shark

Actual: cat, cat, robot

Training data

Predicted: cat, dog, shark

Actual: cat, cat, robot

Where did the errors appear?

Training data

Predicted: cat, dog; shark

Actual: cat, cat, robot

Where did the errors appear?

Training data

Predicted: cat, dog; shark

Actual: cat, cat, robot

Where did the errors appear?

Training data

Predicted: cat, dog; shark

Actual: cat, cat, robot

Where did the errors appear?

Training data

Training data

Predicted: cat, dog; shark

Actual: cat, cat, robot

Tree 2

Where did the errors appear?

Training data

Training data

Predicted: cat, dog; shark

Actual: cat, cat, robot

Where did the errors appear?

Training data

Predicted: cat, dog; shark

Actual: cat, cat, robot

Tree 2

Where did the errors appear?

Training data

Training data

Predicted: cat, dog; shark

Actual: cat, cat, robot

Tree 2

Predicted: cat, cat, donkey

Actual: cat, cat, robot

Where did the errors appear?

Training data

Training data

Predicted: cat, dog, shark

Actual: cat, cat, robot

Tree 2

Predicted: cat, cat, donkey

Actual: cat, cat, robot

Where did the errors appear?

Where did the errors appear?

Training data

Training data

Predicted: cat, dog, shark

Actual: cat, cat, robot

Tree 2

Predicted: cat, cat, donkey

Actual: cat, cat, robot

Where did the errors appear?

Duplicate these training examples to emphasize them more when learning the next tree

Where did the errors appear?

Training data

Training data

Predicted: cat, dog; shark

Actual: cat, cat, robot

Tree 2

Predicted: cat, cat, donkey

Actual: cat, cat, robot

Where did the errors appear?

Duplicate these training examples to emphasize them more when learning the next tree

Where did the errors appear?

Training data

Predicted: cat, dog; shark

Actual: cat, cat, robot

Where did the errors appear?

Duplicate these training examples to emphasize them more when learning the next tree

Training data

Predicted: cat, cat, donkey

Actual: cat, cat, robot

Where did the errors appear?

Training data

Predicted: cat, dog; shark

Actual: cat, cat, robot

Where did the errors appear?

Duplicate these training examples to emphasize them more when learning the next tree

Training data

Predicted: cat, cat, donkey

Actual: cat, cat, robot

Where did the errors appear?

Training data

Predicted: cat, dog, shark

Actual: cat, cat, robot

Where did the errors appear?

Duplicate these training examples to emphasize them more when learning the next tree

Training data

Predicted: cat, cat, donkey

Actual: cat, cat, robot

Where did the errors appear?

Training data: x_1, x_2, \ldots, x_n x_1, x_2, \ldots, x_n

Weights: $w_1^{(1)}, w_2^{(1)}, \dots, w_n^{(1)}$ $w_1^{(2)}, w_2^{(2)}, \dots, w_n^{(2)}$

Predicted: $\widehat{y}_1^{(1)}, \widehat{y}_2^{(1)}, \dots, \widehat{y}_n^{(1)} \qquad \widehat{y}_1^{(2)}, \widehat{y}_2^{(2)}, \dots, \widehat{y}_n^{(2)}$

Actual: y_1, y_2, \ldots, y_n

$$X_1, X_2, \ldots, X_n$$

 $W_1^{(2)}, W_2^{(2)}, \ldots, W_n^{(2)}$

 y_1, y_2, \ldots, y_n

$$X_1, X_2, \dots, X_n$$

 $W_1^{(T)}, W_2^{(T)}, \dots, W_n^{(T)}$

$$y_1, y_2, \ldots, y_n$$

Learn trees sequentially accounting for mistakes made previously

Training data: x_1, x_2, \ldots, x_n x_1, x_2, \ldots, x_n

$$X_1, X_2, \ldots, X_n$$

Weights: $w_1^{(1)}, w_2^{(1)}, \dots, w_n^{(1)}, w_1^{(2)}, w_2^{(2)}, \dots, w_n^{(2)}$

Predicted: $\widehat{y}_{1}^{(1)}, \widehat{y}_{2}^{(1)}, \dots, \widehat{y}_{n}^{(1)}$ $\widehat{y}_{1}^{(2)}, \widehat{y}_{2}^{(2)}, \dots, \widehat{y}_{n}^{(2)}$

Actual: $y_1, y_2, ..., y_n$ $y_1, y_2, ..., y_n$

Tree
$$T$$

$$\widehat{y}_1^{(T)}, \widehat{y}_2^{(T)}, \dots, \widehat{y}_n^{(T)}$$

 y_1, y_2, \ldots, y_n

Learn trees sequentially accounting for mistakes made previously

Weights:
$$w_1^{(1)}, w_2^{(1)}, \dots, w_n^{(1)}, w_1^{(2)}, w_2^{(2)}, \dots, w_n^{(2)}, \dots, w_n^{(2)}$$
 $w_1^{(T)}, w_2^{(T)}, \dots, w_n^{(T)}$

$$X_1, X_2, \ldots, X_n$$

$$W_1^{(2)}, W_2^{(2)}, \ldots, W_n^{(2)}$$

Predicted:
$$\widehat{y}_{1}^{(1)}, \widehat{y}_{2}^{(1)}, \dots, \widehat{y}_{n}^{(1)}$$
 $\widehat{y}_{1}^{(2)}, \widehat{y}_{2}^{(2)}, \dots, \widehat{y}_{n}^{(2)}$

Actual:
$$y_1, y_2, ..., y_n$$
 $y_1, y_2, ..., y_n$

$$\widehat{y}_1^{(2)}, \widehat{y}_2^{(2)}, \ldots, \widehat{y}_n^{(2)}$$

$$y_1, y_2, \ldots, y_n$$

 y_1, y_2, \ldots, y_n

Adjust for how much each tree's votes count

Learn trees sequentially accounting for mistakes made previously

Training data: x_1, x_2, \ldots, x_n x_1, x_2, \ldots, x_n

 X_1, X_2, \ldots, X_n Weights: $w_1^{(1)}, w_2^{(1)}, \dots, w_n^{(1)}, w_1^{(2)}, w_2^{(2)}, \dots, w_n^{(2)}, \dots, w_n^{(2)}, \dots, w_n^{(T)}$

Predicted: $\widehat{y}_1^{(1)}, \widehat{y}_2^{(1)}, \dots, \widehat{y}_n^{(1)}$ $\widehat{y}_1^{(2)}, \widehat{y}_2^{(2)}, \dots, \widehat{y}_n^{(2)}$

Actual: $y_1, y_2, ..., y_n$ $y_1, y_2, ..., y_n$

$$\widehat{y}_1^{(T)}, \widehat{y}_2^{(T)}, \ldots, \widehat{y}_n^{(T)}$$

 y_1, y_2, \ldots, y_n

Adjust for how much each tree's votes count

$$similarity(x, x_i) = \sum_{t=1}^{T} \alpha_t similarity_t(x, x_i)$$

Learn trees sequentially accounting for mistakes made previously

Training data: x_1, x_2, \ldots, x_n x_1, x_2, \ldots, x_n

Weights: $w_1^{(1)}, w_2^{(1)}, \dots, w_n^{(1)}, w_1^{(2)}, w_2^{(2)}, \dots, w_n^{(2)}, \dots, w_n^{(2)}, \dots, w_n^{(T)}, w_2^{(T)}, \dots, w_n^{(T)}$

 X_1, X_2, \ldots, X_n

Predicted: $\widehat{y}_1^{(1)}, \widehat{y}_2^{(1)}, \dots, \widehat{y}_n^{(1)}$ $\widehat{y}_1^{(2)}, \widehat{y}_2^{(2)}, \dots, \widehat{y}_n^{(2)}$

Actual: $y_1, y_2, ..., y_n$ $y_1, y_2, ..., y_n$

$$\widehat{y}_1^{(T)}, \widehat{y}_2^{(T)}, \ldots, \widehat{y}_n^{(T)}$$

 y_1, y_2, \ldots, y_n

Adjust for how much each tree's votes count

similarity
$$(x, x_i) = \sum_{t=1}^{T} \alpha_t$$
 similarity $_t(x, x_i)$ weight for tree t

Learn trees sequentially accounting for mistakes made previously

Training data: x_1, x_2, \ldots, x_n x_1, x_2, \ldots, x_n

 X_1, X_2, \ldots, X_n Weights: $w_1^{(1)}, w_2^{(1)}, \dots, w_n^{(1)}, w_1^{(2)}, w_2^{(2)}, \dots, w_n^{(2)}, \dots, w_n^{(2)}, \dots, w_n^{(T)}, w_2^{(T)}, \dots, w_n^{(T)}$

Actual: $y_1, y_2, ..., y_n$ $y_1, y_2, ..., y_n$

Predicted: $\widehat{y}_1^{(1)}, \widehat{y}_2^{(1)}, \dots, \widehat{y}_n^{(1)}$ $\widehat{y}_1^{(2)}, \widehat{y}_2^{(2)}, \dots, \widehat{y}_n^{(2)}$

 y_1, y_2, \ldots, y_n

Adjust for how much each tree's votes count

 $similarity(x, x_i) = \sum_{i} \alpha_t similarity_t(x, x_i)$ weight for tree t

Still an adaptive NN method!

Learn trees sequentially accounting for mistakes made previously

Training data: X_1, X_2, \ldots, X_n X_1, X_2, \ldots, X_n

$$X_1, X_2, \ldots, X_n$$

$$X_1, X_2, \ldots, X_n$$

$$W_1^{(1)}, W_2^{(1)}, \ldots, W_n^{(1)}$$

$$W_1^{(2)}, W_2^{(2)}, \ldots, W_n^{(2)}$$

Weights:
$$(w_1^{(1)}, w_2^{(1)}, \dots, w_n^{(1)}, w_1^{(2)}, w_2^{(2)}, \dots, w_n^{(2)}, \dots, w_n^{(2)}, \dots, w_n^{(T)}, w_2^{(T)}, \dots, w_n^{(T)})$$

$$\widehat{y}_1^{(1)}, \widehat{y}_2^{(1)}, \ldots, \widehat{y}_n^{(1)}$$

Predicted:
$$\widehat{y}_1^{(1)}, \widehat{y}_2^{(1)}, \dots, \widehat{y}_n^{(1)} \qquad \widehat{y}_1^{(2)}, \widehat{y}_2^{(2)}, \dots, \widehat{y}_n^{(2)}$$

Actual:

$$y_1, y_2, \ldots, y_n$$

$$y_1, y_2, \ldots, y_n$$

$$\widehat{y}_1^{(T)}, \widehat{y}_2^{(T)}, \ldots, \widehat{y}_n^{(T)}$$

$$y_1, y_2, \ldots, y_n$$

Adjust for how much each tree's votes count

similarity(x, x_i) = $\sum_{i} \alpha_t$ similarity_t(x, x_i)

weight for tree t

Still an adaptive NN method!

Different ways to choose weights yield different boosting methods (e.g., AdaBoost, gradient tree boosting)